根据业务需求,将Kafka中数据抽取插入到Hbase中。目前网上可以找到许多相关的文章,这里介绍Github上的一个开源工具。
上一章节讲到选择SparkOnHbase为主要原型,将之修改为我们需要的源代码。这里给出修改之后的源代码,修改之后符合我们的业务需求,并尽量避免引起其他不必要的问题。同时,后期优化程序执行效率问题。
源代码
class HBaseContext(class HBaseContext(
@transient sc: SparkContext,
@transient config: Configuration,
metas: java.util.HashMap[String, java.util.HashMap[String, java.util.HashMap[String, ColumnInfo]]],
val tmpHdfsConfgFile: String = null) extends Serializable with Logging {
@transient var credentials = SparkHadoopUtil.get.getCurrentUserCredentials()
@transient var tmpHdfsConfiguration: Configuration = config
@transient var appliedCredentials = false;
@transient var metasLocal = metas
@transient val job = new Job(config)
TableMapReduceUtil.initCredentials(job)
val broadcastedConf = sc.broadcast(new SerializableWritable(config))
val credentialsConf = sc.broadcast(new SerializableWritable(job.getCredentials()))
val broadcastMetas = sc.broadcast(metas)
if (tmpHdfsConfgFile != null && config != null) {
val fs = FileSystem.newInstance(config)
val tmpPath = new Path(tmpHdfsConfgFile)
if (!fs.exists(tmpPath)) {
val outputStream = fs.create(tmpPath)
config.write(outputStream)
outputStream.close();
} else {
logWarning("tmpHdfsConfigDir " + tmpHdfsConfgFile + " exist!!")
}
}
def mapPartition[T, R: ClassTag](
rdd: RDD[T],
mp: (Iterator[T], HConnection) => Iterator[R]): RDD[R] = {
rdd.mapPartitions[R](it => hbaseMapPartition[T, R](
broadcastedConf,
it,
mp), true)
}
def applyCreds[T](configBroadcast: Broadcast[SerializableWritable[Configuration]]) {
credentials = SparkHadoopUtil.get.getCurrentUserCredentials()
logInfo("appliedCredentials:" + appliedCredentials + ",credentials:" + credentials);
if (appliedCredentials == false && credentials != null) {
appliedCredentials = true
logCredInformation(credentials)
@transient val ugi = UserGroupInformation.getCurrentUser();
ugi.addCredentials(credentials)
ugi.setAuthenticationMethod(AuthenticationMethod.PROXY)
ugi.addCredentials(credentialsConf.value.value)
}
}
def logCredInformation[T](credentials2: Credentials) {
logInfo("credentials:" + credentials2);
for (a <- 0 until credentials2.getAllSecretKeys.size()) {
logInfo("getAllSecretKeys:" + a + ":" + credentials2.getAllSecretKeys.get(a));
}
val it = credentials2.getAllTokens.iterator();
while (it.hasNext) {
logInfo("getAllTokens:" + it.next());
}
}
def bulkMutation[T](rdd: RDD[T], fun: (T) => (DataEntity), autoFlush: Boolean) {
rdd.foreachPartition(
it => {
hbaseForeachPartition[T](
broadcastedConf, broadcastMetas,
it,
(iter, hConnection, metas) => {
iter.foreach(item => {
val entity = fun(item)
val dbName = entity.dbName
val tabName = entity.tabName
if (metas.containsKey(dbName) && metas.get(dbName).containsKey(tabName)) {
val htable = hConnection.getTable(entity.dbName + ":" + entity.tabName)
htable.setAutoFlush(autoFlush, true)
entity.`type` match {
case "INSERT" | "insert" => {
val insertPuts = Instance.insert(entity, metas)
if (null != insertPuts && insertPuts.size() > 0)
htable.batch(insertPuts)
}
case "UPDATE" | "update" => {
val updatePuts = Instance.update(entity, metas)
if (null != updatePuts && updatePuts.size() > 0)
htable.batch(updatePuts)
}
case "DELETE" | "delete" => {
val deleteDels = Instance.delete(entity)
if (null != deleteDels && deleteDels.size() > 0)
htable.batch(deleteDels)
}
case all: Any => {
logInfo("其他操作:" + all)
}
}
htable.flushCommits()
htable.close()
}
})
})
})
}
def hbaseRDD[U: ClassTag](tableName: String, scan: Scan, f: ((ImmutableBytesWritable, Result)) => U): RDD[U] = {
var job: Job = new Job(getConf(broadcastedConf))
TableMapReduceUtil.initCredentials(job)
TableMapReduceUtil.initTableMapperJob(tableName, scan, classOf[IdentityTableMapper], null, null, job)
sc.newAPIHadoopRDD(
job.getConfiguration(),
classOf[TableInputFormat],
classOf[ImmutableBytesWritable],
classOf[Result]).map(f)
}
def hbaseRDD(tableName: String, scans: Scan): RDD[(Array[Byte], java.util.List[(Array[Byte], Array[Byte], Array[Byte])])] = {
hbaseRDD[(Array[Byte], java.util.List[(Array[Byte], Array[Byte], Array[Byte])])](
tableName,
scans,
(r: (ImmutableBytesWritable, Result)) => {
val it = r._2.list().iterator()
val list = new ArrayList[(Array[Byte], Array[Byte], Array[Byte])]()
while (it.hasNext()) {
val kv = it.next()
list.add((kv.getFamily(), kv.getQualifier(), kv.getValue()))
}
(r._1.copyBytes(), list)
})
}
private def hbaseForeachPartition[T](
configBroadcast: Broadcast[SerializableWritable[Configuration]],
metasBroadcast: Broadcast[HashMap[String, HashMap[String, HashMap[String, ColumnInfo]]]],
it: Iterator[T],
fun: (Iterator[T], HConnection, HashMap[String, HashMap[String, HashMap[String, ColumnInfo]]]) => Unit) = {
val config = getConf(configBroadcast)
val metas = getMetas(metasBroadcast)
applyCreds(configBroadcast)
val hConnection = HConnectionManager.createConnection(config)
fun(it, hConnection, metas)
hConnection.close()
}
/**
* @desc get METAS from broadcast or driver's configure
*/
private def getMetas(metasBroadcast: Broadcast[HashMap[String, HashMap[String, HashMap[String, ColumnInfo]]]]): HashMap[String, HashMap[String, HashMap[String, ColumnInfo]]] = {
if (null != metasLocal) {
return metasLocal
} else {
try {
metasLocal = metasBroadcast.value
metasLocal
} catch {
case ex: Exception => {
logInfo("Unable to getConfig from broadcast")
}
}
}
metasLocal
}
private def getConf(configBroadcast: Broadcast[SerializableWritable[Configuration]]): Configuration = {
if (tmpHdfsConfiguration != null) {
tmpHdfsConfiguration
} else if (tmpHdfsConfgFile != null) {
val fs = FileSystem.newInstance(SparkHadoopUtil.get.conf)
val inputStream = fs.open(new Path(tmpHdfsConfgFile))
tmpHdfsConfiguration = new Configuration(false)
tmpHdfsConfiguration.readFields(inputStream)
inputStream.close()
tmpHdfsConfiguration
}
if (tmpHdfsConfiguration == null) {
try {
tmpHdfsConfiguration = configBroadcast.value.value
tmpHdfsConfiguration
} catch {
case ex: Exception => {
println("Unable to getConfig from broadcast")
}
}
}
tmpHdfsConfiguration
}
private def hbaseMapPartition[K, U](
configBroadcast: Broadcast[SerializableWritable[Configuration]],
it: Iterator[K],
mp: (Iterator[K], HConnection) => Iterator[U]): Iterator[U] = {
val config = getConf(configBroadcast)
applyCreds(configBroadcast)
val hConnection = HConnectionManager.createConnection(config)
val res = mp(it, hConnection)
hConnection.close()
res
}
private class GetMapPartition[T, U](
tableName: String,
batchSize: Integer,
makeGet: (T) => Get,
convertResult: (Result) => U) extends Serializable {
def run(iterator: Iterator[T], hConnection: HConnection): Iterator[U] = {
val htable = hConnection.getTable(tableName)
val gets = new ArrayList[Get]()
var res = List[U]()
while (iterator.hasNext) {
gets.add(makeGet(iterator.next))
if (gets.size() == batchSize) {
var results = htable.get(gets)
res = res ++ results.map(convertResult)
gets.clear()
}
}
if (gets.size() > 0) {
val results = htable.get(gets)
res = res ++ results.map(convertResult)
gets.clear()
}
htable.close()
res.iterator
}
}
def fakeClassTag[T]: ClassTag[T] = ClassTag.AnyRef.asInstanceOf[ClassTag[T]]
}
根据我们的需求,重构了HbaseContext的源代码,删除了不必要的程序代码,从源头上保证了程序适用于我们的应用场景。
SparkSteaming代码
/** initialize ZK UTIL */
@transient val zkUtil = new CuratorUtil()
/** get initialize parameters */
val offsetPath = PropertiesUtil.getProperty(ConstantUtil.ZOOKEEPER_SPARK_PATH)
zkUtil.createZKNodePer(offsetPath, null)
val topic = PropertiesUtil.getProperty(ConstantUtil.KAFKA_TOPIC_NAME)
val recTime = Integer.parseInt(PropertiesUtil.getProperty(ConstantUtil.STREAMING_RECTCKE_TIME))
val ZK_MYSQL_PATH = PropertiesUtil.getProperty(ConstantUtil.ZOOKEEPER_NAMESPACE_MYSQL_TABLES);
val brokerList = PropertiesUtil.getProperty(ConstantUtil.KAFKA_BROKER_LIST);
val kafkaParams = Map[String, String](
"metadata.broker.list" -> brokerList,
"zookeeper.connect" -> PropertiesUtil.getProperty(ConstantUtil.ZOOKEEPER_SERVER_LIST),
"group.id" -> PropertiesUtil.getProperty(ConstantUtil.KAFKA_CONSUMER_GROUPID))
/** initialize HBASE METAS for filter */
@transient @volatile var metas: java.util.HashMap[String, java.util.HashMap[String, java.util.HashMap[String, ColumnInfo]]] = Instance.paserMetas(zkUtil, ZK_MYSQL_PATH)
if (metas.size() < 1) {
println("load hbase tablem metas failed!")
return ;
}
/** initialize Context */
// configure
@transient val sparkConf = new SparkConf()
.set("spark.streaming.backpressure.enabled", PropertiesUtil.getProperty(ConstantUtil.STREAMING_BACK_ENABLED)) // 设置可以限制
.set("spark.streaming.kafka.maxRatePerPartition", PropertiesUtil.getProperty(ConstantUtil.STREAMING_KAFKA_MAXRATE)) // 设置具体限制数量:records/SEC
.set("spark.streaming.stopGracefullyOnShutdown", PropertiesUtil.getProperty(ConstantUtil.STREAMING_SHUTDOWN_GRACEFULLLY)) // 设置Gracefully stop
.set("serializer.class", "kafka.serializer.StringEncoder")
@transient val hbaseConf = HBaseConfiguration.create();
hbaseConf.addResource("/etc/hbase/conf.cloudera.hbase/hbase-site.xml")
hbaseConf.addResource("/etc/hbase/conf.cloudera.hbase/core-site.xml")
@transient val sc = new SparkContext(sparkConf)
val ssc = new StreamingContext(sc, Seconds(recTime));
val fromOffsets = readOffsetData(zkUtil, offsetPath, topic, brokerList, 9092)
val stream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder, (String, String)](ssc, kafkaParams, fromOffsets, (mmd: MessageAndMetadata[String, String]) => (mmd.key(), mmd.message()))
stream.foreachRDD(rdd => {
val offsets = rdd.asInstanceOf[HasOffsetRanges].offsetRanges.map { offset => (offset.partition, offset.fromOffset) }
writeOffsetData(zkUtil, offsetPath, offsets)
val hbaseContext = new HBaseContext(sc, hbaseConf, metas)
hbaseContext.bulkMutation(rdd.map(item => item._2), (KV: String) => {
Instance.parse(KV)
}, false)
})
/** add gracefully stop control */
Runtime.getRuntime.addShutdownHook(new Thread {
override def run(): Unit = {
try {
zkUtil.close()
} catch {
case e: Exception => {
}
}
ssc.stop(true, true)
}
})
/** spark streaming start and wait termination */
ssc.start()
ssc.awaitTermination()
}
/**
* @desc read data from Zookeeper
*/
def readOffsetData(zkUtil: CuratorUtil, offsetPath: String, topic: String, brokerList: String, kafkaPort: Integer): Map[TopicAndPartition, Long] = {
val orgData = zkUtil.readDataForPath(offsetPath)
if (null == orgData) {
val util = KafkaUtil.getInstance();
util.init(brokerList, kafkaPort, topic);
val offsets = util.getLeastOffsets
val fromOffsets = for (i <- 0 to offsets.size() - 1)
yield TopicAndPartition.apply(topic, i) -> offsets.get(i).toLong
return fromOffsets.toMap
}
val data = JSON.parseFull(orgData).get.asInstanceOf[Map[String, String]]
val fromOffsets = data.map(item => {
TopicAndPartition.apply(topic, item._1.toInt) -> item._2.toLong
})
return fromOffsets
}
/**
* @desc write offset data to Zookeeper
*/
def writeOffsetData(zkUtil: CuratorUtil, offsetPath: String, data: Array[(Int, Long)]): Unit = {
val map = data.toMap[Int, Long].map(item => {
item._1.toString() -> item._2.toString()
})
zkUtil.setDataForPath(offsetPath, JSONObject(map).toString)
}
本博客所有文章除特别声明外,均采用 CC BY-SA 4.0 协议 ,转载请注明出处!